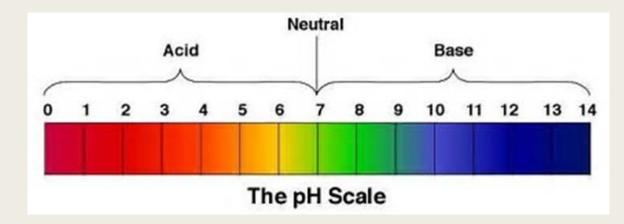
MAKING WINE WITH HIGH AND LOW PH JUICE

Ethan Brown New Mexico State University 11/11/2017

Overview

How pH changes during winemaking

• Reds \rightarrow To adjust for high pH and how


• Whites \rightarrow Early harvest due to poor conditions

- Low pH
- Low varietal character
- Deacidification of White wine juice

pH in Wine

pH is the MOST important number in winemaking!

- Microbial stability
- Indirect stylistic effects
- White wine range 3.20-3.50
- Red wine range 3.40-3.70

What Changes pH in the Winery

- Skin Contact
 - With reds skin contact can pH.
 - How much can depend on contact time
- Acids produced during fermentation
 - Weak organic acid will actually DPH
- Malolactic Fermentation
 - pH due to malic to lactic conversion (increase by 0.2 typical)
- Bitrartrate stabilization
 - **PH** if above 3.65 (3.5 -3.8)
 - _____if pH is below 3.65 (3.5-3.8)

Titratable Acidity

- With strong acids pH and TA are about the same
- Grapes have weak organic acids, thus pH and TA differ.
- TA in relation to pH relates to perceivable acidity
 - Same TA will taste more sour at lower pH values
- Is TA a useful harvest parameter?

	What happens to pH and TA during:					
		рΗ	TA	Comments *		
VINEYARD	Acid synthesis in the berry		1			
	Acid degradation (malate respiration or gluconeogenesis)	or †	ţ	pH can remain constant if the ratio tartaric:malic rises; or it can rise if there is mineral uptake		
	Uptake of K or Na	1	↓	TA falls while extent of exchange increases		
	Post-veraison rainfall		ł	TA falls as acidity is diluted in swollen berries, no change in pH		
WINERY	Wine dilution with water		Ļ	pH does not change because K and Na are diluted at the same degree as TA		
	Yeast fermentation (by itself)	1		Weaker acids (e.g. succinic) are formed at the expense of stronger ones		
	Malolactic fermentation	↑	→			
	Precipitation of potassium bitartrate	, ↑ or↓	↓	Interesting case in which effect on pH depends entirely on original wine pH: if original pH<3.8, then pH drops; if original pH>3.8, then pH increases; and if original pH=3.8, then there is no change in pH		
	Extended skin contact	↑	→	Skin is rich in K+, and there is more extent of exchange		
	Actual fermentation (weak acid formation and bitartrate precipitation combined)	↑ or ↓	↓	Depending on the ext ent of two opposing forces: weak acid formation dominates, which raises pH, or bitartrate precipitation dominates, which lowers pH		
	Wine contamination		ţ	TA due to formation of acetic and other acids, but impact on pH is negligible due to wine buffering capacity		

* Please read discussion in original text for further explanation

Author: Bibiana Guerra. Editor: Roger Boulton. This summary series funded by J. Lohr Vineyards & Wines.

In General

- pH will increase after fermentation
- Excess skin contact will increase pH
- pH will decrease after cold stabilization (assuming adjustment)

Expectedly, TA will decrease and pH will increase during the winemaking process

Acidity Index

- Acid perception depends on TA > pH and buffering capacity
- Combined use of total acidity and pH
 - Acidity Index = Total Acidity(g/L) pH

- Only valid
 - TA \rightarrow (3.8-7.5)
 - pH → (2.6-4.0)
- Estimated "balanced" wine
 - *Red: AI* = 2.6
 - White: AI = 3.9

Only a very rough guideline

Plane, R.M., "An acidity index for the taste of wines," Am. J. Enol. Vit. 31 (1980) 265.

Red Wines Harvest Parameters

Maturity with moderate pH is the goal

"Maturity"

- Mature
 - Soft tannins
 - Smooth tannic structure
 - Round mouthfeel
 - Full bodied
 - Deep color

- Immature
 - Rough
 - Bitter
 - Herbaceous
 - Astringent

The Red Grape Harvest Decision

- With warm and wet viticulture environments harvest is not easy
- Two main harvest parameters
 - *pH*
 - "grape quality in the field"
- We worry about
 - Increasing pH
 - Onset of rot
 - Dilution of berries due to water

High pH Happens

■ Often a high pH > 3.6 is inevitable in reds

The decision then is what route to take


- Low pH winemaking
- High pH winemaking
- The implications are...
 - Stability
 - Stylistic choice of high pH wine

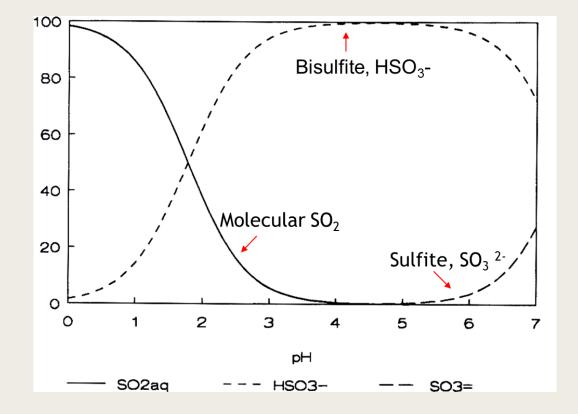
Low pH Red Winemaking

- Always make major adjustments pre-fermentation
- Tartaric Acid
 - Most prominent acid in grapes
 - Most common acid to acidify juice/wine
 - Strongest of the acids found in grape juice...less needed
- Malic Acid
 - Will not precipitate like tartaric will
 - Will contribute to malolactic fermentation
 - Only L-malic will ferment
- Citric Acid
 - Never add before primary fermentation bacterial metabolism
 - Good for final acid adjustment to finished wine

Low pH Red Winemaking

- 1 g/L of tartaric will lower pH 0.1 units
- Keep in mind how pH will change through winemaking
 - Fermentation
 - Skin contact

- (0.05-0.2 units) Due to K in the grape skins
- ML fermentation (0.1 0.3)
- Cold stabilization
- Adjustment down to pH 3.35 of juice = finished wine pH of 3.2-3.9!

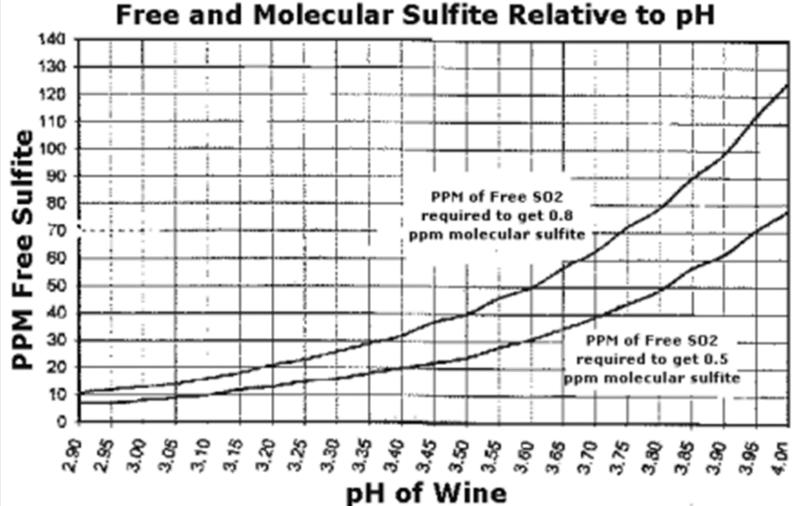

Low pH Considerations

- \blacksquare SO₂ has antimicrobial effect at lower pH values due to molecular SO₂
- Overall stability and aging...longer life span
- Fresh for the "modern" wine drinker
 - Vibrant color
 - More fruit forward = less oxidation
- New world style is fresh...and maybe tart (variety dependent?)
- Goes well with fruit forward stylistic techniques
 - (co-inoculation, tannin additions, shorter aging time)

High pH Red Winemaking

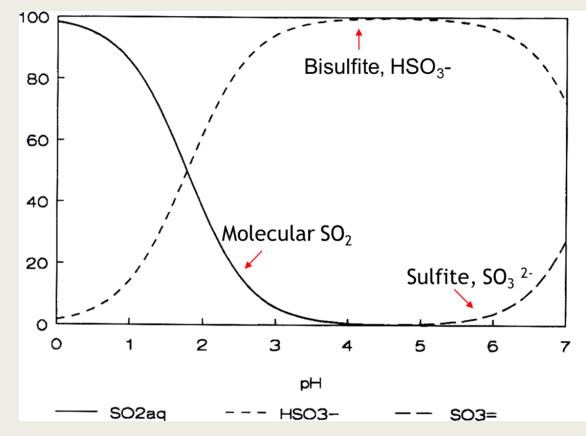
- Why?!?
- Stylistic approach is key
- Acidic "fresh" wines may be popular but "traditional" reds are desirable
- Effects of high pH reds
 - Less microbial stability
 - Less color stability
 - More round, soft mouthfeel

SO₂ has three main forms in wine

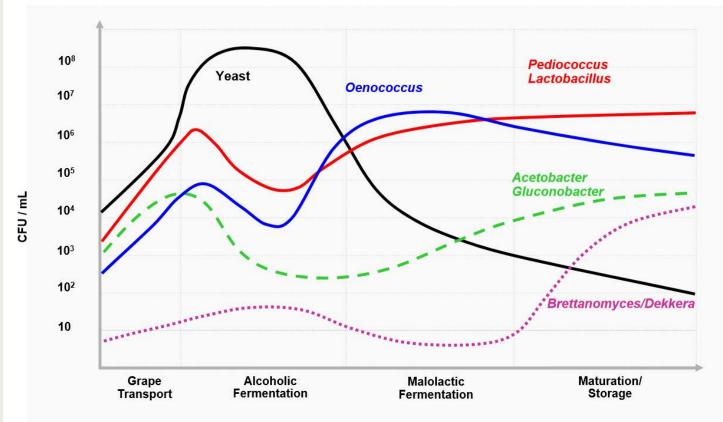


Stability through SO₂

- The molecular form inhibits microbes
- Loss of cell viability and inhibition of growth
- Rules of thumb
 - 0.5 ppm molecular SO_2 is sufficient if pH is not too high
 - 0.8 ppm molecular SO_2 is preferrable in unhealthy wine


Stability through SO₂

- Microbial stability is the largest factor
 - Sulfur dioxide is pH dependent
 - Molecular (free) sulfur dioxide


At High pH Free SO₂ is not the goal

- Above pH 3.6 we will not reach a good level of free molecular SO₂
- Oxidation is a large factor though!
- Oxidation of phenolics generates H₂O₂ leading to further oxidation
- Bisulfite is the largest scavenger of peroxide
- Bisulfite also inhibits enzymatic oxidation
- Add 15-20 ppm "free" to keep oxidation down

Living with Microbes

- We must consider all factors to allow microbes to flourish
- What do they need?
 - Nitrogen content
 - Temperature
 - Oxygen
 - Control agents?

Living with Microbes - Nitrogen

- Without sufficient molecular SO₂ microbial stability must be gained in different ways
- Always run YANs to determine perfect nutrient amount
 - Never make a general addition for fear of excess nutrients

Nitrogen Requirements

- Depends on...
 - Yeast strain needs and Brix
- Low N Strains: Sugar (g/L) x 0.75
- Medium N Strains: Sugar (g/L) x 0.90
- High N Strains : Sugar (g/L) x 1.25
- 1° Brix ≈ 10 (g/L)

- Rule of Thumb
 - 150 mg/L = 21 degrees
 Brix
 - 200mg/L = 23 degrees
 Brix
 - 250mg/L = 25 degrees
 Brix

Living with Microbes - Temperature

- Careful of cool fermentations due to competition
- Fear the cold soak
- Tank fermentation is better for temp control
- Lower barrel room temps between 55-60
 - Always sterile filter if kept at cool temps

Living with Microbes - Oxygen

- High pH wines require less oxygen
 - Possible browning
 - Growth of unwanted organisms
- Very mindful barrel topping
- Gas reds in tank more regularly

Living With Microbes – Cellar Procedures

- Strong "fast" yeast strain selection
- Co-inoculation vs. sequential of ML bacteria
- How much SO₂ to add and when
 - Don't be afraid of high initial additions (depending on color)
 - Stay on top of barrel maintenance
- Tannin addition to make up for intensity
- Sterile filtration

Living With Microbes – Control Agents

Scott Labs:

- Lysozyme LAB
- Bactiless AAB and LAB
- No Brett Inside
- Velcorin
 - Kills yeast, bacteria and molds
 - Requires \$74,000 dosing machine

- None of these replace SO₂
- Check on legalities if exporting
- All depend on microbial load and dosing

Extremely High pH...over 4.0

"Plastering"

- Calcium sulfate (gypsum) in combination with Tartaric Acid
- Calcium sulfate removes H+ from tartaric acid
- Thus lowers pH without affecting TA
- 1 g/L of gypsum lowers pH 0.09 units (approximately)
- Legal limit of sulfate = no more than 2.0g/L

– Trial:

- Add gypsum up to approximately 1.5g/L ...Test
- Add Tartaric Acid for further adjustment
- Not common b/c slow precipitation and some bitter aftertaste

Bringing it all together!

- Techniques of low and high pH winemaking can both be used for the end goal
- The important point:
 - pH of reds ready for bottling should be 3.6-3.7
 - TA of reds ready for bottling should be 5-7 g/L
- Difference is style is about the pH at and after primary fermentation

Questions?

Whites With Low pH

- Harvesting early can result in low pH and immature fruit
- Results:
 - Great for sparkling wine production
 - Increased acidity may result in deacidification

Deacidification

- Not a common adjustment to wine but has serious implications
- pH range 3.19-3.29 = upwards pH adjustment
 - Malolactic Fermentation = associated flavor changes
 - Calcium Carbonate (CaCO₃) will remove tartaric acid in the form of calcium tartrate. Acceptable in small additions.
 - Can cause calcium tartrate instability will result in precipitation of fine crystals over long periods of time...months after bottling!

Deacidification

- Potassium carbonate (K_2CO_3) or potassium bicarbonate $(KHCO_3)$
- Potassium bicarbonate is more commonly used
 - Slightly weaker than potassium carbonate
 - Produces less CO₂
- Double Salt Method:
 - Reduction of both tartaric and malic acids
 - Deacidify a portion of the juice with all of the addition and add back to main lot. Treat 20%-30% of total. Has to be above pH 4.5

Double Salt Deacidification

- Name comes from the double salt calcium tartrate malate
- Formed at a pH > 4.5, Maximum at 5.1, thus, only a portion of wine can be treated
- Take 20%-30% of wine and treat with calculated amount of calcium carbonate for entire batch.
 - Allow precipitation of salt crystals and then filter before blending back
 - Advantages:
 - Better sensory results and uniform acid removal
 - Can be used with high pH and high TA b/c it removes both malic and tartaric acids

Calculate Deacidification

TA Reduction

- 1.0 g/L TA 0.9 g/L $KHCO_3$ potassium bicarbonate
- 1.0 g/L TA 0.6 g/L $K_2 CO_3$ potassium carbonate
- 1.0 g/L TA 0.67 g/L CaCO₃ calcium carbonate

Calculate Deacidification

pH Increase

The wine solution is buffered, thus, pH increase may not directly change with TA

Always run test trials when deacidifying

Deacidification

- Perceivable acidity is the most important thing.
- Consider both TA and pH values in this case.
- Actual pH and TA change depends on the juice buffering capacity
 - Calculations are approximations
- Consider acidity changes throughout the winemaking process.

Method of Addition

- Always conduct lab trials!!
- Too much of any salt may contribute to a salty taste.
- Conduct the trials below and up to calculated addition of salt.

Potassium Bicarbonate Trial

Rate of addition of $KHCO_3$ (g/L)	рН	Titratable acidity (g/L)
0 (Control)	2.94	10.2
1	3,15	9.4
2	3.29	8.3
3	3.50	7.0
4	3.76	5.7

Low pH Summary

- Early harvest may force low pH issues
- Potassium bicarbonate is the best agent to add
- Always run trials to see affect on TA and pH

High pH Summary

- Can adjust pH with risk of increasing tartness
 - Adjust downward of 3.5 with tartaric acid
- Can maintain high pH with improved microbial control
 - Alternative...a combined approach
- SO₂ will always be beneficial even at a high pH
- We have microbial control agents if needed

Questions?

